The particle, which is proposed to have 0.02 per cent of an electron’s mass, does not interact with light and may not penetrate the Earth’s atmosphere but will be detected through a space experiment.
Researchers have proposed a new fundamental particle which could explain why no one has managed to detect the elusive ‘dark matter’ that makes up 85 per cent of the universe’s mass.
Dark matter is conjectured to exist as a consequence of its gravitational effects on stars and galaxies, gravitational lensing (the bending of light rays) around these celestial objects, and through its imprint on the Cosmic Microwave Background (the afterglow of the Big Bang).
Despite compelling indirect evidence and considerable experimental effort, dark matter has never been detected directly.
Particle physics gives clues to what dark matter might be, and the standard view is that dark matter particles have, researchers say, a very large mass for fundamental particles — comparable to that of heavy atoms.
Lighter dark matter particles are considered less likely for astrophysical reasons, although exceptions are known, and this research highlights a previously unknown window where they could exist and, with very general arguments from particle physics, derives some surprising results, according to researchers from the University of Southampton.
They have proposed a new particle that has a mass only about 0.02 per cent that of an electron.
While it does not interact with light, as required for dark matter, it does interact surprisingly strongly with normal matter.
Indeed, in stark contrast to other candidates, it may not even penetrate Earth’s atmosphere, researchers said.
Earth-bound detection is therefore not likely, so the researchers plan to incorporate searches into a space experiment planned by the Macroscopic quantum resonators (MAQRO) consortium, with whom they are already involved.
A nanoparticle, suspended in space and exposed directly to the flow of dark matter, will be pushed downstream. Sensitive monitoring of this particle’s position will reveal information about the nature of this dark matter particle, if it exists, researchers said.
“Our candidate particle sounds crazy, but currently there seem to be no experiments or observations which could rule it out,” said Dr James Bateman, from Physics and Astronomy at the University of Southampton and co-author of the study.
“Dark matter is one of the most important unsolved problems in modern physics, and we hope that our suggestion will inspire others to develop detailed particle theory and even experimental tests,” he said.
“At the moment, experiments on dark matter do not point in a clear direction and, given also that the Large Hadron Collider at CERN has not found any signs of new physics yet, it may be time that we shift our paradigm towards alternative candidates for dark matter,” said Dr Alexander Merle, co-author from the Max Planck Institute in Munich, Germany.
The research is published in the journal Scientific Reports.
No comments:
Post a Comment